Virtual Curtain Limited and CSIRO Land and Water

Turning Wastewater Into Rainwater

July 2022

Virtual Curtain Limited

("VCL") ABN: 30 129 687 029 Registered 19 February 2008

VCL Directors

Robert Brierley Clive Jones Jeffrey Moore Graeme Wallis

CSIRO Principal Research Scientist

Dr Grant Douglas

Company Secretary

Robert Brierley

Company Address

Suite 1, Ground Floor 6 Richardson Street WEST PERTH Western Australia 6005

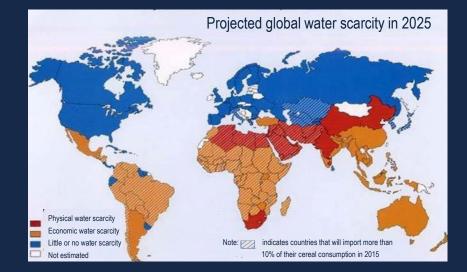
Contact: Mr Jeffrey Moore

M: +61 400 927 202 T: +61 8 9486 7375

Corporate details

Auditors

Butler Settineri (Audit) Pty Ltd Unit 16, First Floor, Spectrum Offices 100 Railway Road SUBIACO WA 6008



Contaminated wastewater THE PROBLEM

Water security is a growing global issue

Enormous global volumes of contaminated wastewater generated from mining, minerals/materials processing, power plants, paper making, printing, dyeing with annual cost to industry of billions of dollars

China is the largest producer of wastewater with 68.5 billion tonnes of wastewater produced annually

In a single industry sector in Inner Mongolia, acid and contaminated wastewater from coal-tochemicals plants is forecast to exceed 100 million tonnes per annum by 2020

Virtual Curtain technology THE SOLUTION

WHAT WE DO

Virtual Curtain technology offers proven solutions for the treatment of contaminated industrial and mining wastewater, above-ground and inaquifer, to a standard suitable for re-use or discharge

Contaminated wastewater APPLICABLE INDUSTRY SECTORS

Virtual Curtain technology has proven suitability to the treatment of wastewaters across key industry sectors including:

- MINING/MINERALS PROCESSING (*AMD*, tailings, process water)
- NUCLEAR wastewaters *(ISL plumes, tailings, process water)*
- COAL-to-CHEMICAL industry wastewaters (<Si and hardness)
- POWER GENERATION
- PETROCHEMICAL plant wastewaters
- ELECTROPLATING industry wastewaters
- TEXTILE industry wastewaters
- PAPER PULP industry wastewaters

Virtual Curtain technology INTELLECTUAL PROPERTY

Technology invented by CSIRO and commercialised by VCL under exclusive global licencing agreement

30 registered patents and numerous patent applications in Australia and internationally

ALL RIGHTS RESERVED

AU2007/000452: Remediation of groundwater AU2010/000317: Treatment or remediation of natural or waste water AU2015/050175: A process for treatment of and/or remediation of water AU2018/050967: Water treatment process AU2016/050282: Selective separation of elements or commodities of interest in aqueous streams

Based on internationally peer-reviewed science

Virtual Curtain technology TECHNOLOGY and COST ADVANTAGES

Typically one-step process with 200-500 fold element enrichment from the wastewater solution

Simple to implement, low infrastructure/capital requirements, infinitely scalable

Uses readily available additives for broad spectrum remediation, removes most major, trace elements, radionuclides and softens water

Liquid-to-liquid mixing with instantaneous in-situ formation of hydrotalcite

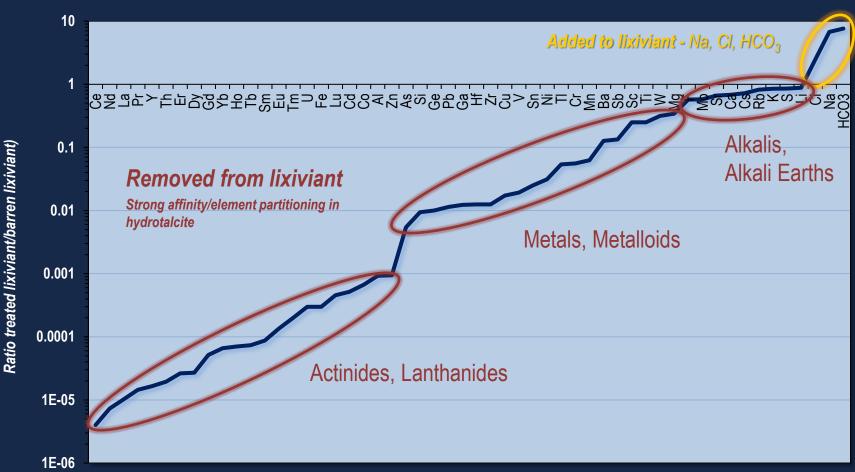
Easily separable from solution, typically with 10-20% by mass of lime based (gypsum) precipitates

Virtual Curtain technology WHAT CAN BE REMOVED FROM WASTEWATER?

Elements present in hydrotalcites in cationic layers or as interlayer (oxy)anions

1 H	 elements extracted by hydrotalcite from solution 										2 He						
3	4	5 6 7 8 9									10						
Li	Be										Ne						
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	UUb	Uut	Uuq	Uup	Uuh	Uus	Uuo
	Lanthanides 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71																
L	antriar	lides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	Actir	nides	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Virtual Curtain technology RADIONUCLIDES REMOVED FROM WASTEWATER


Radionuclides from nuclear industry wastewaters.....

1 H	- ²³⁵ U fission products (red boxes) ²³⁵ U										_	2 He					
3 Li	4 Be											10 Ne					
11 Na	12 Mg											18 Ar					
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	⁹⁵ Zr	41 Nb	⁹⁹ Mo	⁹⁹ Tc	¹⁰³ Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	¹³² Te	¹³¹]	54 Xe
¹³⁷ Cs	¹⁴⁰ Ba	Lanthanid e Series	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	²¹⁴ Pb	²¹⁴ Bi	84 Po	85 At	86 Rn
87 Fr	²²⁶ Ra	Actinide Series	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 UUb	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
ı	anthar	anthanides 140La 141Ce 59 60 61 62 63 64 65 66 67 68 69 70 71 Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu									Lu						
	Actir	nides	89 Ac	²³⁰ Th	91 Pa	²³⁵ U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Virtual Curtain technology RATE of REMOVAL FROM WASTEWATER?

csiro

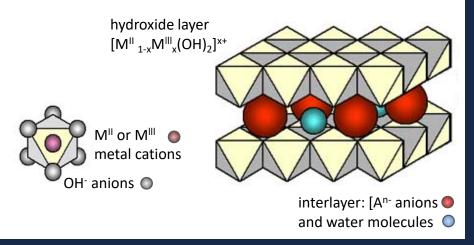
Element or Analyte

Virtual Curtain technology THE SCIENCE in SUMMARY

Virtual Curtain technology is based on the in-situ formation of **Hydrotalcite** (a layered double-hydroxide mineral or anionic clay)

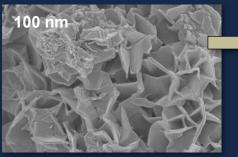
Think of hydrotalcite as a chemical sandwich:

all contaminants - positively charged ions (metals) and negatively charged anions contained within the one structure



Simplicity:

contaminants are building blocks instantaneous one step broad spectrum


Potential ore grade/reprocessing

Validation of Virtual Curtain technology UPSCALING - FROM TEST TUBE TO INDUSTRY

Australian Mine Pit – from nanoscale to commercial scale

uluh

csiro

Virtual Curtain technology INTERNATIONAL CONTRACTS and DEMONSTRATIONS

Virtual Curtain technology CHINA INDUSTRY APPLICATION Removal of Si, Ca and Mg from Coal-Chemical Industry Wastewaters

Shaanxi

Coal-to Chemicals industrial park in Shaanxi producing very high concentrations of silica and hardness in wastewater, caused significant operations issues due to silica/calcium fouling:

RO membranes

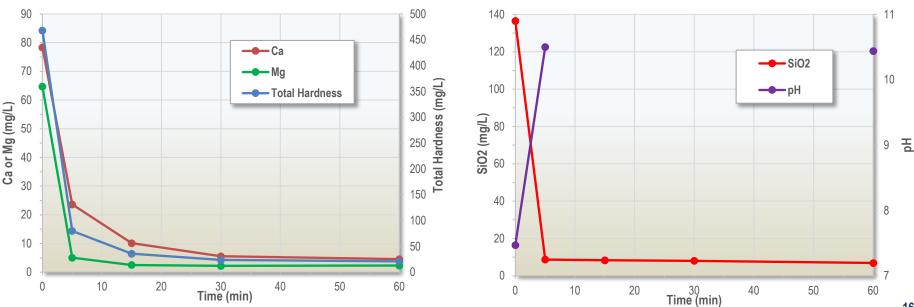
 operational inefficiencies due to the need for high frequency backwashing, significantly reduced RO deliverables and higher operational costs

Evaporation circuit

operating inefficiencies strongly compromised the target of "zero emissions"

Pipework infrastruscture

scaling and erosion of pipework/plumbing infrastructure

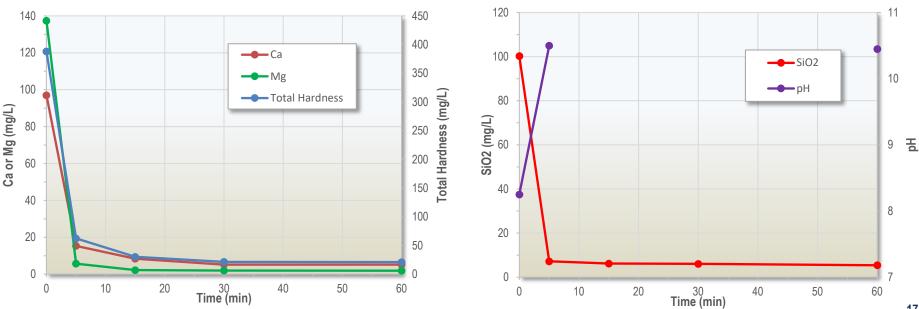

Shaanxi coal gasification plant - wastewaters pre- and post-treatment

Foulant	Pre- treatment	Post- treatment	Removal (%)
Total Hardness	468	21	96%
Ca (mg/L)	78	4.6	94%
Mg (mg/L)	65	2.3	96%
SiO ₂ (mg/L)	136	6.9	95%

RO Concentrate Wastewater Stream

Removal of silica (and reduction of hardness)

HT Technology enabled the Stage 3 RO to operate, improved efficiency by 50% and improved the wastewater treatment capacity from <800m³ to 1,200m³ per hour.

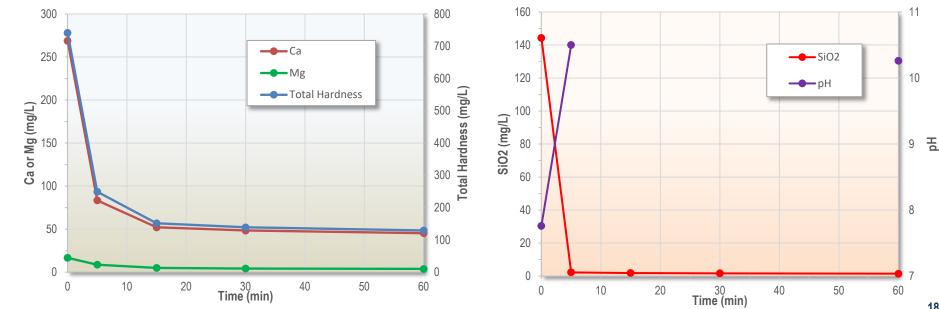

Shaanxi coal gasification plant - wastewaters pre- and post-treatment

Foulant	Pre- treatment	Post- treatment	Removal (%)
Total Hardness	388	21	95%
Ca (mg/L)	97	5.2	95%
Mg (mg/L)	137	1.9	99%
SiO ₂ (mg/L)	100	5.4	95%

Coal Gasification Wastewater Stream 1

Removal of silica (and reduction of hardness)

HT Technology enabled the Stage 3 RO to operate, improved efficiency by 50% and improved the wastewater treatment capacity from <800m³ to 1,200m³ per hour.

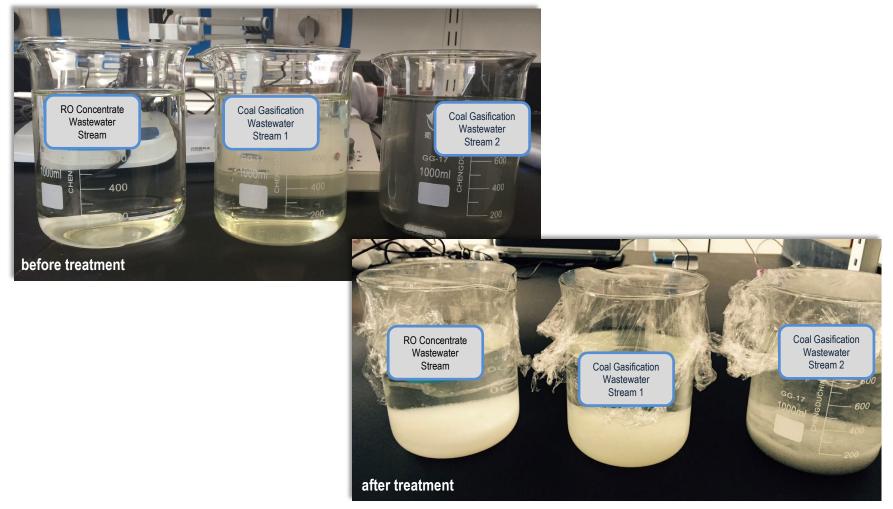

Shaanxi coal gasification plant - wastewaters pre- and post-treatment

Foulant	Pre- treatment	Post- treatment	Removal (%)
Total Hardness	742	129	83%
Ca (mg/L)	269	45	83%
Mg (mg/L)	17	3.8	77%
SiO ₂ (mg/L)	144	1.4	99%

Coal Gasification Wastewater Stream 2

Removal of silica (and reduction of hardness)

HT Technology enabled the Stage 3 RO to operate, improved efficiency by 50% and improved the wastewater treatment capacity from <800m³ to 1,200m³ per hour.



19

Shaanxi coal gasification plant - wastewaters pre- and post-treatment

Virtual Curtain technology AUSTRALIA INDUSTRY APPLICATION In-Situ Hydrotalcite Treatment at Baal Gammon Copper Mine Queensland

Commercial application of VCL's hydrotalcite technology completed at Baal Gammon copper mine in North Queensland during 2013

Contract aim to remediate contaminated pit water with hydrotalcite, followed by RO water polishing to achieve purity that satisfied ANZECC Water Quality Guidelines for final discharge into the adjacent Jamie Creek

Analyte	рН	As (mg/L)	Cu (mg/L)	Cd (mg/L)	Co (mg/L)	F (mg/L)	Fe (mg/L)	Mn (mg/L)	Pb (mg/L)	Si (mg/L)	Zn (mg/L)
Pre-Treatment	2.9	0.04	40	0.3	0.54	59	59	16	0.13	60	22
Post-HT Treatment	9.2	<0.005	<0.005	0.001	<0.005	34	<0.05	0.04	<0.005	1.3	<0.005
Post-RO Treatment	7.0	<0.003	0.001	<0.0001	<0.001	0.97	<0.005	<0.005	<0.001		0.04
ANZECC Irrigation Limits	4.0- 9.0	0.1- 2.0	0.2- 5.0	0.01- 0.05		1.0- 2.0	200- 10,000	200- 10,000	2.0- 5.0		2.0- 5.0

Virtual Curtain technology Baal Gammon Copper Mine

HT technology trial at bench top scale prior to implementation

> HT technology implementation at commencement

Virtual Curtain technology Baal Gammon Copper Mine

Hydrotalcite precipitate after treatment

Treatment of 56 megalitres of contaminated mine-pit water to remove metals and metalloids prior to final RO treatment and discharge into the environmentally sensitive Jamie Creek

Introduction of HT reagents at surface

Virtual Curtain technology Baal Gammon Copper Mine – Wastewater treatment life cycle

Pit prior to treatment containing 56 megalitres of pH 2.9 acid mine water containing a range of contaminants

Pit during treatment with white halo highlighting hydrotalcite precipitating in-situ.

Recommencement of mining operations

Dewatered pit with hydrotalcite residue "ore" grading 8% Cu and 4% Zn (on dry mass basis)

VIRTUAL CURTAIN LIMITED

illi

csiro

Virtual Curtain technology AUSTRALIA INDUSTRY CASE STUDY Beverley ISL Uranium Mine South Australia

VIRTUAL CURTAIN

Beverley ISL mine - Pre & post hydrotalcite treatment of barren lixiviant

Analyte	Lixivia	nt (mg/L)
	Untreated	Treated by HT
pН	1.6	10.6 buffers to 8.5
EC (mS/m)	2,890	1,920
Si	140	2
Mg	594	1
AI	410	10
К	175	100
Са	699	483
Na	2,190	4,290
SO ₄	6,600	6,000
HCO ₃	<1	24

✓ Confirms broad spectrum removal:

- Mg, Al, SO₄, EC \clubsuit , only Na, HCO₃ \clubsuit
- 10 of 19 trace elements < detection limits
- most other trace elements >99% -
- − U 99.7% ↓ (+ daughter radionuclides)
- ✓ Treated lixiviant similar to original groundwater (plus minor Na and SO₄)

Analyte	Lixiviant	: (mg/L)
	Untreated	Treated by HT
As	0.005	<0.005
Cd	0.17	0.007
Со	9.9	0.003
Cr	0.41	0.004
Cu	0.75	<0.002
Fe	170	0.023
La	1.6	<0.005
Mn	1.8	0.006
Ni	5.9	<0.005
Р	4.8	<0.1
Pb	0.29	<0.005
Sc	1.1	<0.010
Se	0.08	0.06
Th	3.5	<0.005
Ti	0.048	<0.002
U	21	0.07
V	1.2	0.11
Zn	7.6	<0.005

nUlr

CSIRO

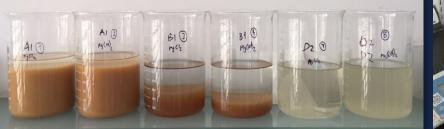
Beverley ISL mine - Hydrotalcite precipitate chemistry and calcination

Major Elements	Precipitate (%)	Calcined (%)
SiO ₂	7.45	9.91
TiO ₂	<0.002	0.01
Al ₂ O ₃	25.80	34.14
Fe ₂ O ₃	3.86	4.99
MnO	0.19	0.26
MgO	18.79	24.77
CaO	1.36	2.03
Na ₂ O	1.31	1.71
K ₂ O	0.06	0.09
P_2O_5	0.30	0.38
Sum	70.11	92.33

- Calcination: Hydrotalcite spinel \checkmark
- 30% mass loss (de- H_2O) \Rightarrow enrichment \checkmark
- \checkmark Ore grade $\approx 1\%$ U (1.1% eU₃O₈ plus ≈2.5% REE
- Potential for reprocessing/cost offset \checkmark

Trace Elements	Precipitate (µg/g)	Calcined (µg/g)
As	22	29
Cd	28	26
Со	2,432	3,125
Cr	96	116
Cu	179	218
Мо	18	24
Nb	16	22
Ni	1,175	1,527
Sc	290	405
Th	431	569
V	470	647
Zn	1,859	1,717
U	7,162	9,778
La	317	448
Се	1,896	2,708
Nd	2,068	2,894
Sm	946	1,308
Yb	640	875
Y	4,731	6,403

Beverley North uranium deposit - Hydrotalcite precipitate chemistry of radionuclides


Radionuclide		iviant _{Bq/L)}	Removal (%)	HT precipitate (Bq/kg)
	Untreated	Treated by HT		
²³⁸ U	225	2	99.1%	67,194
²³⁴ Th	557	0	99.9%	120,986
²³⁰ Th	8,683	66	99.2%	1,955,469
²²⁶ Ra	324	26	92.0%	55,282
²¹⁴ Pb	326	26	92.1%	53,822
²¹⁴ Bi	322	26	92.0%	57,013
²¹⁰ Pb	2,193	4	99.8%	488,302

- ✓ Radionuclide activities at Beverley North uranium deposit:
 - In barren and treated lixiviant (Bq/L)
 - In HT-based precipitate (Bq/kg)

Virtual Curtain technology PRESENTATION SUMMARY

- $\checkmark\,$ Typically 200-500 fold element enrichment over the solution
- \checkmark One step, broad spectrum remediation technology
 - Simultaneously removes many major, trace elements, and radionuclides
- Simple to implement, low infrastructure/capital requirements using "off the shelf" reagents
- ✓ Typically 10-20% mass of lime-based (gypsum) precipitates
- ✓ Easily separable from solution
- ✓ Potential cost offset contained metal values
- ✓ Further stabilisation (long-term repository)

Virtual Curtain technology HT precipitates compared to lime precipitates


Dewatered hydrotalcite precipitate Dewatered lime (gypsum) precipitate

allh

csiro

Virtual Curtain technology Hydrotalcite water remediation capability

VCL and CSIRO collaboration to

deliver

hydrotalcite water

remediation

technology to

industry

Virtual Curtain technology Technology partnerships

VCL

- Australian public company with expertise and relationships in natural resources and mineral processing markets
- Exclusive international licence to commercialise, sublicence and implement CSIRO hydrotalcite technology
- Numerous registered and provisional patent applications globally
- Licence agreement includes exclusive access to inventor and CSIRO facilities to undertake testwork and evaluation/ modelling of technology applications

CSIRO

- ✓ Australia's national science agency and one of the largest & most diverse in the world
- \checkmark Ranked in top 1% in 14 research fields
- ✓ Inventors of wi-fi, plastic bank notes, atomic absorption spectroscopy, breathable contact lenses
- ✓ Over 160 active licences of CSIRO innovation

VCCL

- ✓ Commercial technology rights for the Greater China Region under sub-license from VCL
- ✓ Jointly-owned by VCL and Triangle Capital Partners

Virtual Curtain Limited and CSIRO Land and Water

contact us:

Virtual Curtain Limited Jeffrey Moore Director Phone: +61 (0)400 927 202 Email: j.moore@virtualcurtain.com.au Web: www.virtualcurtain.com.au

Suite 1, 6 Richardson Street WEST PERTH 6005 Western Australia CSIRO Land and Water Dr Grant Douglas Senior Principal Research Scientist Phone: +61 (0)8 9333 6131 Email: <u>Grant.Douglas@csiro.au</u> Web: <u>www.csiro.au</u>

Underwood Avenue FLOREAT 6014 Western Australia